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In the United States, about 14% of total crash fatalities are pedestrian 
related. In 2012, 4,743 pedestrians were killed, and 76,000 pedestrians 
were injured in vehicle–pedestrian crashes in the United States. Vehicle–
pedestrian crashes have become a key concern in Louisiana as a result 
of the high percentage of fatalities there in recent years. In 2012, pedes-
trians accounted for 17% of total crash fatalities in the state. This study 
used multiple correspondence analysis (MCA), an exploratory data 
analysis method used to detect and represent underlying structures in a 
categorical data set, to analyze 8 years (2004 to 2011) of vehicle–pedestrian 
crashes in Louisiana. Pedestrian crash data are best represented as trans-
actions of multiple categorical variables, so the use of MCA was a unique 
choice to determine the relationship of the variables and their significance. 
The findings indicated several nontrivial focus groups (e.g., drivers with 
high-occupancy vehicles, female drivers in bad weather conditions, and 
drivers distracted by mobile phone use). The associated geometric factors 
were hillcrest roadways, dip or hump aligned roadways, roadways with 
multiple lanes, and roadways with no lighting at night. Male drivers were 
seen to be relatively susceptible to severe and moderate injury crashes. 
Fatal pedestrian crashes were correlated to two-lane roadways with no 
lighting at night. The MCA method helped measure significant contrib-
uting factors and degrees of association between the factors through the 
analysis of the systematic patterns of variation with categorical data sets 
of pedestrian crashes. The findings from this study will help transportation 
professionals improve countermeasure selection strategies.

New policies tend to encourage safer and more effective travel for 
all roadway users to make transportation systems more sustainable and 
efficient. In 2012, 4,743 pedestrians were killed and 76,000 pedestri-
ans were injured in vehicle–pedestrian crashes in the United States 
(1). Improved pedestrian safety is one of the top priorities in the 
AASHTO Strategic Highway Safety Plan (2).

A traffic crash is considered a rare, random, multifactored event 
always preceded by a state in which one or more roadway users fails 
to cope with the current environment. Any individual crash is the out-
come of a series of events. Although each individual crash is unique 
in nature, the common occurrence exists of a few features in several 
individual crashes (3). One of the most important tasks in highway 

safety analysis is to identify the most significant factors that are related 
to crashes. Multiple correspondence analysis (MCA) is a unique 
method that presents the relative closeness of the cate gorical variables 
from any data set. Traditional hypothesis testing is designed to verify 
a priori hypotheses on relationships between variables, but MCA 
is used to identify systematic relationships between variables and 
variable categories with no a priori expectations. The main scope of 
MCA is that it uniquely simplifies complex data and extracts signifi-
cant knowledge from the information in the data that assumption- 
based statistical data analysis fails to collect. Moreover, MCA has a 
specific feature similar to the multivariate treatment of the data through 
concurrent consideration of multiple categorical variables that would 
not be detected in a series of pairwise comparisons of the variable. 
Given that pedestrian crash data can be represented as transactions of 
multiple categorical variables, MCA is a good option to determine the 
relationship of the variables and their significance.

The vehicle–pedestrian crash statistics of Louisiana call for instant 
and advanced solutions to ease safety concerns for pedestrians. 
The objective of this study was the application of MCA on vehicle–
pedestrian crashes to (a) identify the relative closeness of the key 
association factors, (b) find important nontrivial associations between 
the key factors, and (c) provide intuitions to select better counter-
measures to improve pedestrian safety. Improvement of pedestrian 
safety is crucial to accomplish the state’s “Destination Zero Deaths” 
goal, and the MCA method used in this study will help to find the rela-
tive closeness of the key association factors so that necessary actions 
can be taken to improve pedestrian safety strategies.

Literature review

MCA has been popular in French scientific literature and thus has 
obtained a high level of development and use. Although less used 
in English scientific literature, the method has received increasing  
attention recently in the fields of social science and marketing research. 
Benzécri developed MCA, a multivariate statistical approach, on the 
basis of the correspondence analysis method that is popular among 
scientists. MCA, one of the main standards of geometric data analy-
sis, also is referred to as the pattern recognition method, which treats 
arbitrary data sets as a combination of points in n-dimensional space. 
However, in the field of multivariate traffic safety data analysis, geo-
metric methods rarely have been used. Roux and Rouanet pointed 
out that this method, while a powerful tool to analyze a full-scale 
research database, was hardly discussed and therefore underused in 
many promising fields (4).

Fontaine was the first to use MCA for a typological analysis 
of pedestrian-related crashes (5). The classification of pedestrians 
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involved in crashes was divided into four major groups. The typol-
ogy produced by this analysis revealed correlations between criteria 
without necessarily the indication of a causal link with the crashes. 
The resulting typological breakdown served as a basis for in-depth 
analysis to improve the understanding of these crashes and propose 
necessary strategies. Golob and Hensher used MCA to establish cau-
sality of nonlinear and nonmonotonic relationships between socio-
economic descriptors and measures of travel behavior (6). Factor 
et al. conducted a study of the systematical exploration of the homol-
ogy between drivers’ community characteristics and their involve-
ment in specific types of vehicle crashes (7). Das and Sun used the 
MCA method to analyze 8 years (2004 to 2011) of single-vehicle fatal 
crashes in Louisiana to identify the important contributing factors and 
their degree of association (8).

The existing literature reveals an extensive variety of contribut-
ing factors in vehicle–pedestrian crashes. The key variables associ-
ated with vehicle–pedestrian crashes according to the earlier related 
studies were higher speed limit (30 mph or more) (9, 10), absence 
of lighting at night (11), pedestrian visibility (12, 13), and certain 
age groups (14, 15).

After a careful investigation of the closely associated research, it 
was found that a detailed study of the relative closeness of the key 
associated factors of vehicle–pedestrian crashes in the United States 
had not been performed. This present study attempted to determine 
the significant combinations of the variable categories for vehicle–
pedestrian crashes through MCA, which could help state agencies 
determine effective and efficient crash countermeasures.

MethodoLogy

theory of MCa

The mathematical theory development for MCA is complex in nature. 
In this method, there is no need to define response and explanatory 
variables. MCA requires the construction of a matrix on the basis  
of the pairwise cross-tabulation of each variable. For a table with 
qualitative or categorical variables, MCA can be explained with an 
individual record (in row), i, where three variables (represented by 
three columns) have three category indicators (a1, b2, and c3). MCA 
can generate the spatial distribution of the points with different dimen-
sions on the basis of these three categories. This method produces 

two combinations of points as shown in Figure 1: the combination 
of individual transactions and the combination of categories (4). A 
combination of points can be compared with a geographic map with 
the same distance scale in all directions. A geometric diagram can-
not be strained or contracted along a particular dimension. Thus the 
basic property of any combination of points can be known from its 
dimensionality. Usually, the two-dimensional combination is con-
venient in the investigation of the points that lie on the plane. The 
complete combinations in general are referred to by their principal 
dimensions, which are ranked in descending order of significance. 
MCA aims to create a combination of groups put together from a 
large data set.

First, P is the number of variables, and I is the number of trans-
actions. The matrix will look like “I multiplied by P,” a table for 
all categorical values. If Tp is the number of categories for variable p, 
the total number of categories for all variables is T = ΣP

p=1 Tp. Another 
matrix will then be generated as “I multiplied by T” in which each 
of the variables will have several columns to show all of its possible 
categorical values.

Category k is considered to be associated with various individual 
records, which can be denoted by nk (nk > 0), where fk is nk/n and 
is equal to the relative frequency of individuals associated with k.  
The values of fk will create a row profile. The distance between 
two individual records is created by the variables for which each 
has different categories. For variable p, individual record i contains 
category k and individual record i ′ contains category k ′, which is 
different from k. The squared distance between individual records i 
and i ′ for variable p is

( )′ = +
′
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The set of all distances between individual records determines the 
combination of individuals, which consist of n points in a space. The 
dimensionality of the space is L, where L ≤ K − P. It was assumed 
that n ≥ L. If M i denotes the point that represents individual I, and 
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FIGURE 1  MCA method.
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Z is the mean point of the combination, the squared distance from 
point M i to Z can be defined as

∑( ) = −
∈

ZM
P f

i

kk Ki

1 1
1 (3)
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where Ki is the response pattern of individual i (i.e., the set of the P 
categories associated with individual record i).

The cloud of categories is considered a weighted combination 
of K points. Category k is represented by a point denoted by M k with 
weight nk. For each variable, the sum of the weights of category 
points is n. Thus for the whole set K the sum is nP. The relative 
weight for point Mk is wk, which equals fk/P. For each variable, the 
sum of the relative weights of category points is 1/P. Thus for the 
whole set the sum is 1.
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If nkk′ denotes the number of individual records that have both of 
the categories k and k′, the squared distance between M k and M k′ is
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The numerator is the number of individual records associated 
with either k or k ′ but not both. For two variables, p and p′, the 
denominator is the familiar theoretical frequency for the cell (k, k ′) 
of the Kp × Kp′ two-way table (4).

The actual computations in MCA are performed on the inner pro-
duct of this matrix known as the Burt Table. The MCA calculations 
and two-dimensional plot visualizations in this study were performed 
through the use of open-source statistical R Version 3.02 software 
(16). The FactoMineR package was used for its convenience to ana-
lyze the data sets (17). The data sets were studied according to the 
variables and their categories. Emphasis was given to the study of 
the categories, because they represented variables and a group of 
individual records.

descriptive data analysis

To achieve its objectives, this study used state-maintained vehicle–
pedestrian crash data compiled from 2004 through 2011 in the state 
of Louisiana. The primary data set was prepared through the merger 
of three tables (i.e., crash table, Department of Transportation and  
Development table, and vehicle table) from the Microsoft Access 

data set. The pedestrian data set was merged again with this merged 
data set to create a complete profile of the pedestrian-related crashes.

In the crash database, numerous variables were not pertinent to 
this research (e.g., vehicle identification number, driver’s license 
number, database manager’s name, police report number). To focus 
on the meaningful analysis, a set of key variables was selected 
[e.g., roadway geometrics (alignment and lighting), collision type, 
environmental factors (weather), driver-related factors (driver gen-
der, age, condition), number of vehicle occupants, and pedestrian-
related factors (pedestrian gender, age, condition, severity)]. To select 
the variables, the findings of previous, related research were used in 
combination with engineering judgment.

An initial analysis indicated that some variables were highly 
skewed, which meant that most crashes fell into one of the two or 
more categorical values. For example, 94% of the crashes involved 
roadways with straight-level alignment, 76% occurred during clear 
weather, and 78% were single-occupant crashes. Table 1 shows that 
61% of the pedestrians involved in crashes were men, a percentage 
that was higher than the general trend (i.e., 50% to 55% of traffic 
crashes involved male drivers in Louisiana). The not-too-skewed 
variables were collision type, pedestrian injury, and lighting condition.

MCa explained

MCA can be explained as a graphical representation in which most 
associated categories are plotted close together, and unassociated ones 
are plotted far apart, on the basis of the calculated values. Graphical 
representations help make it possible to perceive and interpret data 
easily. These representations effectively summarize large, complex 
data sets through the simplification of the structure of the associations 
between variables, and they provide a universal and general view 
of the data (4). Points (categories) that are close to the mean value 
are plotted near the MCA plot’s origin. Those that are more distant 
are plotted farther away. Categories with a similar distribution are 
presented near one another through the formation of combinations. 
Those with different distributions are plotted some distance apart. 
Thus the dimensions are interpreted by the positions of the points 
on the map, with their loading over the dimensions as crucial indi-
cators. A two-dimensional depiction usually is sufficient to explain 
most of the variance in MCA (18).

The eigenvalues measure indicates how much of the categorical 
information is accounted for by each dimension; the higher the 
eigenvalue, the larger the amount of the total variance among the 
variables on that dimension. The largest possible eigenvalue for 
any dimension is 1. Usually, the first two or three dimensions con-
tain higher eigenvalues than others. In this analysis, the maximum 
eigenvalue in Dimension 1 was 0.24. The similarly low eigen values 
in each dimension indicated that the variables in the crash data 
were heterogeneous. All carried to some extent unique information, 
which implied that a reduction in any of the variables might result 
in the loss of important information about the crash observations. 
The heterogeneity of the crash variables reflected the random nature 
of crash occurrences.

In Table 2, eigenvalues and percentages of variance of the first 
10 dimensions are revealed. A steady decrease in eigenvalues also 
can be seen. The first principal axis explained 5.4% of the principal 
inertia, the second principal axis explained 4.7% (i.e., 10.10% in total), 
and none of the remaining principal axes explained more than 4.7%. 
Because the first plane (with Dimensions 1 and 2) represented the 
largest inertia, only its results were presented and discussed.



98 Transportation Research Record 2519

The coordinates of the first five dimensions for the top 10 cate-
gories are shown in Table 3. The variables with significance in two 
dimensions are listed in Table 4. Large coordinate measures indicate 
that the categories of a variable are better separated along that dimen-
sion, while similar coordinate measures for different variables in 
the same dimensions indicate that these variables are related to each 
other. Correlated variables provide redundant information, and thus 
some of them can be removed. The categories with significance in two 
dimensions are listed in Table 5. The most discriminant variables for 
Dimension 1 are weather, lighting, and alignment. For Dimension 2, 

they are pedestrian injury, pedestrian gender, and lighting. Through 
observation of the relative closeness of the variables, it was found that 
the number of lanes, types of collision, driver distraction, and number 
of vehicle occupants were closer in the two-dimensional space than 
elsewhere. A more detailed exploration of the variable categories 
would be of help to discover the underlying structure of the variables. 
The values from Table 5 indicate that Dimensions 1 and 2 were gov-
erned by environmental and geometric variable categories. However, 
the highest estimate for Dimension 2 was found for the categories of 
pedestrian injury and gender.

resuLts and disCussion

The contribution of a category depends on data, whereas for a variable 
it depends only on the number of categories of that variable. The more 
categories a variable has, the more the variable contributes to the vari-
ance of the cloud. The less frequent a category, the more it contributes 
to the overall variance. This property enhances infrequent categories, 
which is desirable up to a certain point. Figure 2 shows the relative 
closeness of all listed variables. The key focus of MCA is to provide 
an insight into the data set through information visualization. The 
popular graphical R package ggplot2 was used extensively, along with 
FactoMineR, to produce the informative MCA plots (19). The combi-
nation selection had its basis in the relative closeness of the category 
location in the MCA plot. In the principal MCA plot, the distribution of 
the coordinates of all categories is shown (Figure 3). This plot explores 
the positions of the variable categories in the two-dimensional space 

TABLE 1  Description of Key Variables

Category Frequency Percentage Category Frequency Percentage

Alignment (Align.)
  Straight–level 10,750 93.45
  Curve–level 360 3.13
  On grade 174 1.51
  Dip, hump 9 0.08
  Hillcrest 64 0.56
  Unknown (Unk.) 146 1.27

Light
  Daylight 6,272 54.52
  Dark—no street lights 1,442 12.54
  Dark—street light 3,231 28.09
  Dusk, dawn 358 3.11
  Unknown (Unk.) 200 1.74

Collision
  Single vehicle 4,825 41.95
  Rear end 466 4.05
  Right angle 799 6.95
  Right turn 75 0.65
  Sideswipe 493 4.29
  Left turn 209 1.82
  Head on 185 1.61
  Unknown (Unk.) 4,451 38.69

Weather
  Clear 8,770 76.24
  Abnormal 2,590 22.52
  Unknown (Unk.) 143 1.24

Pedestrian gender (Ped.Gender)
  Female 3,738 32.50
  Male 6,958 60.49
  Unknown (Unk.) 807 7.02

Note: Info. = information. Coded names of variables are identified in parentheses.

Pedestrian injury (Ped.Inj.)
  Fatal 801 6.96
  Severe 902 7.84
  Moderate 3,877 33.70
  Complaint 4,156 36.13
  No injury 1,767 15.36

Number of occupants (Num.Occ.)
  One 9,021 78.42
  Two 1,626 14.14
  Three 535 4.65
  Four 164 1.43
  Five or more 126 1.10
  Unknown (Unk.) 31 0.27

Number of lanes (Num.Lanes)
  Two 1,571 13.66
  Four 2,102 18.27
  Six 432 3.76
  Eight 16 0.14
  No info. 7,382 64.17

Driver distraction (Dr.Distract)
  Not distracted 5,888 51.19
  Outside vehicle 406 3.53
  Cell phone 83 0.72
  Inside vehicle 158 1.37
  Electronic device 10 0.09
  Unknown (Unk.) 4,958 43.10

TABLE 2  Inertia Values for Top 10 Dimensions

Dimension Eigenvalue
Percentage 
of Variance

Cumulative Percentage 
of Variance

1 0.2349 5.4197 5.4197

2 0.2030 4.6836 10.1032

3 0.1837 4.2394 14.3426

4 0.1346 3.1060 17.4487

5 0.1302 3.0038 20.4525

6 0.1261 2.9091 23.3616

7 0.1223 2.8228 26.1844

8 0.1196 2.7608 28.9452

9 0.1179 2.7210 31.6661

10 0.1172 2.7038 34.3700
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TABLE 3  Location of Top 10 Categories in First Five Dimensions

Category

Coordinate by Dimension

1 2 3 4 5

Align_Curve-Level −0.4630 0.5324 1.1099 −0.7356 0.7293

Align_Dip, Hump 0.2036 −0.5090 −0.5219 0.6853 0.2727

Align_Hillcrest −0.1604 0.4902 1.6002 2.2154 −0.6616

Align_On Grade −0.5258 0.5053 1.3161 0.9319 1.1687

Align_Straight-Level −0.0590 −0.0714 −0.0751 0.0034 −0.0384

Align_Unk 6.1688 3.1579 0.5568 −0.5575 −0.0906

Light_Dark—No Street Lights −0.6664 0.9346 1.2191 −0.4113 0.4166

Light_Dark—Street Light −0.0593 0.0052 0.0581 0.8377 −0.5543

Light_Daylight 0.0262 −0.3069 −0.3174 −0.3048 0.2143

Light_Dusk, Dawn −0.1468 0.0490 −0.1905 −0.1736 −0.2926

TABLE 4  Significance of Key Variables on First Plane

Variable R2 p-Value Variable R2 p-Value

MCA Dimension 1 MCA Dimension 2

Weather .5333 0.00 E+00 Ped.Inj. .5246 0.00 E+00

Light .5289 0.00 E+00 Ped.Gender .4393 0.00 E+00

Align. .4973 0.00 E+00 Light .2891 0.00 E+00

Ped.Inj. .1415 0.00 E+00 Weather .1486 0.00 E+00

Ped.Gender .1298 0.00 E+00 Align. .1456 0.00 E+00

Collision .0881 8.01 E–225 Collision .1286 0.00 E+00

Num.Lanes .0837 3.03 E–216 Num.Lanes .1260 0.00 E+00

Dr.Distract .0720 2.39 E–183 Num.Occ. .0216 4.01 E–52

Num.Occ. .0391 6.45 E–97 Dr.Distract .0033 4.02 E–07

TABLE 5  Significance of Key Categories on First Plane

Category Estimate p-Value Category Estimate p-Value

MCA Dimension 1 MCA Dimension 2

Weather_Abnormal −1.0697 0.00 E+00 Ped.Inj._Unk −1.0316 0.00 E+00

Weather_Clear −1.0611 0.00 E+00 Ped.Gender_Unk −0.7621 0.00 E+00

Light_Dark—No Street Lights −0.7455 0.00 E+00 Align_Dip, hump −0.5375 3.88 E–06

Align_On Grade −0.6719 1.33 E–106 Weather_Clear −0.5341 0.00 E+00

Align_Curve-Level −0.6415 2.63 E–129 Weather_Abnormal −0.5018 1.76 E–311

Align_Hillcrest −0.4949 4.81 E–33 Light_Daylight −0.4443 0.00 E+00

Light_Dusk, Dawn −0.4937 6.04 E–227 Align_Straight-Level −0.3404 7.96 E–38

Light_Dark—Street Light −0.4513 0.00 E+00 Collision_Right Turn −0.3071 1.01 E–12

Align_Straight-Level −0.4457 1.58 E–91 Light_Dark—Street Light −0.3037 3.33 E–245

Light_Daylight −0.4099 0.00 E+00 Light_Dusk, Dawn −0.2840 5.65 E–61

Ped.Inj._Fatal −0.3765 9.13 E–154 Num.Lanes_Unk −0.2384 1.05 E–14

Num.Occ_Four −0.3579 1.90 E–24 Num.Occ_One −0.2114 8.66 E–36

Align_Dip, hump −0.3185 9.12 E–04 Dr.Distract_Cell Phone −0.2110 1.13 E–05

Num.Occ_Three −0.3141 4.05 E–38 Num.Lanes_Six −0.2028 3.67 E–14

Num.Occ_Five or more −0.3072 2.43 E–15 Collision_Left Turn −0.1798 1.95 E–11

Num.Occ_Two −0.2630 2.67 E–39 Num.Occ_Five or more −0.1766 1.19 E–06

Ped.Gender_Male −0.2398 1.72 E–253 Num.Occ_Three −0.1519 2.50 E–11

(continued on next page)
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FIGURE 2  MCA plot for variables.

Dr.Distract_Not Distracted −0.2309 5.75 E–17 Ped.Inj._No Injury −0.1214 4.16 E–44

Ped.Gender_Female −0.2118 2.79 E–171 Collision_Rear End −0.1140 2.64 E–09

Collision_Single Vehicle −0.1926 1.72 E–62 Dr.Distract_Inside Vehicle −0.0975 1.29 E–02

Num.Lanes_Two −0.1926 4.76 E–14 Num.Occ_Two −0.0817 1.32 E–05

Num.Occ_One −0.1732 6.92 E–22 Align_On Grade −0.0806 2.82 E–02

Dr.Distract_Inside Vehicle −0.1656 4.72 E–05 Num.Occ_Four −0.0776 1.81 E–02

Dr.Distract_Cell Phone −0.1445 3.76 E–03 Align_Curve-Level −0.0684 3.11 E–02

Ped.Inj._Severe −0.1097 2.29 E–16 Light_Dark—No Street Lights 0.1150 2.04 E–27

Dr.Distract_Outside Vehicle −0.0995 2.61 E–03 Ped.Inj._Complaint 0.1220 1.10 E–109

Ped.Inj._Moderate −0.0897 4.07 E–29 Collision_Head-On 0.1234 1.28 E–05

Ped.Inj._Complaint −0.0665 2.60 E–17 Collision_Unk 0.1271 1.84 E–20

Ped.Inj._No Injury 0.0807 1.26 E–10 Ped.Inj._Moderate 0.1641 8.76 E–187

Num.Lanes_Six 0.1085 2.33 E–04 Num.Lanes_Two 0.2096 1.71 E–19

Collision_Unk 0.1250 1.16 E–16 Ped.Inj._Severe 0.2432 1.84 E–148

Num.Lanes_Unk 0.1807 1.01 E–07 Num.Lanes_Eight 0.2591 2.15 E–03

Ped.Gender_Unk 0.4517 0.00 E+00 Dr.Distract_Electronic Device 0.2996 1.19 E–02

Ped.Inj._Unk 0.5617 0.00 E+00 Ped.Gender_Female 0.3348 0.00 E+00

Dr.Distract_Electronic Device 0.6067 9.25 E–07 Collision_Single Vehicle 0.3601 1.01 E–248

Num.Occ_Unk 1.4155 2.29 E–102 Ped.Gender_Male 0.4273 0.00 E+00

Light_Unk 2.1003 0.00 E+00 Ped.Inj._Fatal 0.6236 0.00 E+00

Weather_Unk 2.1307 0.00 E+00 Num.Occ_Unk 0.6992 4.46 E–30

Align_Unk 2.5724 0.00 E+00 Light_Unk 0.9170 0.00 E+00

Weather_Unk 1.0358 0.00 E+00

Align_Unk 1.1144 8.02 E–136

TABLE 5 (continued)  Significance of Key Categories on First Plane

Category Estimate p-Value Category Estimate p-Value

MCA Dimension 1 MCA Dimension 2
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FIGURE 3  Principal MCA plot for variable categories.

according to the corresponding eigenvalues. When the categories are 
relatively closer, they form a combination cloud.

The plots shown in Figure 4 are six combinations selected from the 
MCA plot. Combination Cloud 1 in Figure 4a combines a wider vari-
ety of variable categories: hillcrest aligned four-lane roadways, single 
vehicle collisions, severe and moderate pedestrian injuries, number of 
occupants two and three, and male pedestrians. It indicates that hill-
crest aligned four-lane roadways were prone to crashes with moderate 
and severe pedestrian injury. It also indicates that larger occupancy 
vehicles often were responsible for single vehicle–pedestrian crashes 
on this specific type of roadway. Combination Cloud 2 in Figure 4b 
associates male pedestrians with moderate injury crashes, while 
the number of occupants in the vehicles is two. It indicates that car 
occupancy has some role in pedestrian-related crashes. Combination 
Clouds 3 and 4 in Figure 4b seem rather insignificant because of their 
positions near the center. However, Combination Cloud 3 associated 
several factors: complaint injury of female pedestrians, dawn or dusk, 
abnormal weather, and nighttime crashes in roadways with lighting. 
This nontrivial finding indicated a specific scenario for female pedes-
trians. Combination Cloud 4 combined a few factors: clear weather, 
single occupant, six-lane straight-level aligned roadways, head-on col-
lisions, and driver distraction as the result of outside events. This find-
ing also was nontrivial in nature. It specifically indicated a particular 
roadway type in which distraction occurred as the result of an out-
side event. Moreover, the crashes involved head-on collisions, which 
implied the involvement of other vehicles. Combination Cloud 5 in 
Figure 4c also associates different variable categories: driver distrac-
tion from mobile or inside equipment, daytime right angle and side-
swipe crashes, dip or hump roadways with unknown information on 
lanes, and property-damage-only pedestrian crashes. This combina-
tion indicated the impact of cell phone use in dip and hump aligned 
roadways. Combination Cloud 6 in Figure 4d associates three variable 

categories: fatal pedestrian crash, nighttime crash, and two-lane road-
ways with no lighting. It indicates that absence of lighting at night is 
a significant factor for pedestrian traffic severity and clearly identifies 
one major focus group on roadway geometrics.

The results presented in this paper demonstrated that MCA would 
be a good option to extract significant knowledge from pedestrian 
crash data. One of the limitations of the study was that the findings 
had their bases in the two-dimensional plane, which explained only 
10% of the inertia of the data. Explanations on more dimensions 
would process more knowledge extraction, which was not done in 
this study. Because the initial variable selection had its basis in pre-
vious research, other variables of interest were not explored. A more 
in-depth investigation into the appropriate variables could form the 
future scope of this research, which would help explain a higher 
percentage of inertia in the data. If the crash database is more com-
plete, MCA will generate more significant combination clouds from 
the data set in an unsupervised way. The findings of this research 
will help traffic safety professionals to determine the hidden risk 
association group of variables in pedestrian crashes.

ConCLusions

Conventional parametric models contain their own model assump-
tions and predefined fundamental relationships between response 
and explanatory variables, and assumption violation will lead to the 
model’s production of erroneous estimations. The MCA method, a 
nonparametric method, identifies systematic relationships among 
variables and variable categories with no a priori assumptions. More-
over, it uniquely simplifies large complex data and represents impor-
tant knowledge from the data set. Principal component analysis, or 
the self-organizing map, is a popular tool to describe numerical data, 
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but MCA was a good option for an exploratory data analysis of the 
categorical variables of vehicle–pedestrian crash occurrences.

The key focus of this study was to illustrate the applicability of 
MCA to identify and represent underlying knowledge in large data 
sets of vehicle–pedestrian crashes. The findings indicated that MCA 
helped to cover multiple and diverse variable categories through its 
showing of nontrivial relationships. The current research identified 
the groups of drivers and pedestrians as well as geometric and envi-
ronmental characteristics that correlated to vehicle–pedestrian crashes. 
The findings revealed a few nontrivial risk groups from the analyzed 
data set. The key combination groups are

•	 Severe and moderate male pedestrian crashes on hillcrest aligned 
four-lane roadways associated with single-vehicle collision and 
high-occupancy vehicles (occupancy of two or three);

•	 Moderate injury of male pedestrians when the occupancy of the 
vehicle is two;
•	 Complaint injury of female pedestrians associated with dawn 

or dusk, abnormal weather, and nighttime crashes in roadways with 
lighting;
•	 Head-on collisions on six-lane, straight-level aligned roadways 

associated with single occupant, clear weather, single occupancy, and 
driver distraction from outside events;
•	 No injury pedestrian crashes on dip and hump roadways as a 

result of driver distraction from mobile phone, accompanied by day-
time right angle and sideswipe crashes and unknown information 
about lanes; and
•	 Fatal pedestrian crashes on two-lane roadways with no lighting 

at night; this result implies that pedestrian behavior in darkness is a 
continuing traffic safety issue.
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FIGURE 4  MCA plots for variable categories.
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The capability of MCA to deal with multidimensional data makes 
it particularly useful to explore the factors that influence crash occur-
rences. The findings from this research shed light on the pattern 
recognition of vehicle–pedestrian crashes, exposed new aspects of  
pedestrian safety, and also pointed to potential research to consider 
more variables and large data sets from multiple states. The findings 
of this study might have seemed trivial in places, but the findings had 
their basis in an extensive data exploration method to execute statis-
tically significant and valid combination groups so that jurisdictions 
could take appropriate action on safety strategies for the combina-
tion groups. Crashes dominated by human factors can be scrutinized 
through the exploration of the current law and safety education system. 
Modifications in the law may be made to make drivers and pedestri-
ans less vulnerable to crashes. Associated geometric features can be 
examined for safety performance, and improvements can be made 
accordingly.
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